![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elirrv | Unicode version |
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 8050 and efrirr 4865, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
elirrv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . . . 4 | |
2 | ssnid 4058 | . . . 4 | |
3 | 1, 2 | spei 2012 | . . 3 |
4 | snex 4693 | . . . 4 | |
5 | 4 | zfregcl 8041 | . . 3 |
6 | 3, 5 | ax-mp 5 | . 2 |
7 | elsn 4043 | . . . . . . 7 | |
8 | ax-9 1822 | . . . . . . . . 9 | |
9 | 8 | equcoms 1795 | . . . . . . . 8 |
10 | 9 | com12 31 | . . . . . . 7 |
11 | 7, 10 | syl5bi 217 | . . . . . 6 |
12 | eleq1 2529 | . . . . . . . . 9 | |
13 | 12 | notbid 294 | . . . . . . . 8 |
14 | 13 | rspccv 3207 | . . . . . . 7 |
15 | 2, 14 | mt2i 118 | . . . . . 6 |
16 | 11, 15 | nsyli 141 | . . . . 5 |
17 | 16 | con2d 115 | . . . 4 |
18 | 17 | ralrimiv 2869 | . . 3 |
19 | ralnex 2903 | . . 3 | |
20 | 18, 19 | sylib 196 | . 2 |
21 | 6, 20 | mt2 179 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
E. wex 1612 e. wcel 1818 A. wral 2807
E. wrex 2808 { csn 4029 |
This theorem is referenced by: elirr 8045 ruv 8048 dfac2 8532 nd1 8983 nd2 8984 nd3 8985 axunnd 8992 axregndlem1 9000 axregndlem2 9001 axregnd 9002 axregndOLD 9003 elpotr 29213 exnel 29235 distel 29236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |