MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Unicode version

Theorem elnelne2 2805
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 2655 . 2
2 nelne2 2787 . 2
31, 2sylan2b 475 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  e.wcel 1818  =/=wne 2652  e/wnel 2653
This theorem is referenced by:  nelrnfvne  6025  eldmrexrnb  6038  afv0nbfvbi  32236  2zrngnmlid  32755  2zrngnmrid  32756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-cleq 2449  df-clel 2452  df-ne 2654  df-nel 2655
  Copyright terms: Public domain W3C validator