MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn0uz Unicode version

Theorem elnn0uz 11147
Description: A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
elnn0uz

Proof of Theorem elnn0uz
StepHypRef Expression
1 nn0uz 11144 . 2
21eleq2i 2535 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  e.wcel 1818  `cfv 5593  0cc0 9513   cn0 10820   cuz 11110
This theorem is referenced by:  elfz2nn0  11798  4fvwrd4  11822  2ffzeq  11823  elfzo0  11863  elfzonn0  11867  elfzom1elp1fzo  11883  cardfz  12080  hashfz0  12490  ccat2s1fvw  12642  swrdccatin2  12712  swrdccatin12lem2  12714  swrdccatin12lem3  12715  swrdccatin12  12716  cshwidxmod  12774  scshwfzeqfzo  12794  bcxmas  13647  mertenslem2  13694  bitsmod  14086  4sqlem19  14481  gsmsymgrfixlem1  16452  gsmsymgreqlem2  16456  efgsrel  16752  gsummptfzsplit  16952  gsummptfzsplitl  16953  pmatcollpw3fi  19286  cpmadugsumlemF  19377  wlkn0  24527  spthonepeq  24589  constr3pthlem3  24657  wwlknext  24724  clwlkisclwwlklem2a1  24779  clwwlkel  24793  wwlkext2clwwlk  24803  clwlkf1clwwlklem  24849  sseqfn  28329  sseqf  28331  risefacp1  29151  fallfacp1  29152  nn0sinds  29298  stoweidlem34  31816  subsubelfzo0  32338  altgsumbcALT  32942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-nn 10562  df-n0 10821  df-z 10890  df-uz 11111
  Copyright terms: Public domain W3C validator