MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Unicode version

Theorem elon 4892
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1
Assertion
Ref Expression
elon

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2
2 elong 4891 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  e.wcel 1818   cvv 3109  Ordword 4882   con0 4883
This theorem is referenced by:  tron  4906  0elon  4936  smogt  7057  rdglim2  7117  omeulem1  7250  isfinite2  7798  r0weon  8411  cflim3  8663  inar1  9174  ellimits  29560  dford3lem2  30969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-in 3482  df-ss 3489  df-uni 4250  df-tr 4546  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
  Copyright terms: Public domain W3C validator