Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabg Unicode version

Theorem eloprabg 6390
 Description: The law of concretion for operation class abstraction. Compare elopab 4760. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1
eloprabg.2
eloprabg.3
Assertion
Ref Expression
eloprabg
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3
2 eloprabg.2 . . 3
3 eloprabg.3 . . 3
41, 2, 3syl3an9b 1297 . 2
54eloprabga 6389 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\w3a 973  =wceq 1395  e.wcel 1818  <.cop 4035  {coprab 6297 This theorem is referenced by:  ov  6422  ovg  6441  brbtwn  24202  isnvlem  25503  isphg  25732  fvtransport  29682  brcolinear2  29708  colineardim1  29711  fvray  29791  fvline  29794 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-oprab 6300
 Copyright terms: Public domain W3C validator