![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eloprabga | Unicode version |
Description: The law of concretion for operation class abstraction. Compare elopab 4760. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
eloprabga.1 |
Ref | Expression |
---|---|
eloprabga |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | elex 3118 | . 2 | |
3 | elex 3118 | . 2 | |
4 | opex 4716 | . . 3 | |
5 | simpr 461 | . . . . . . . . . 10 | |
6 | 5 | eqeq1d 2459 | . . . . . . . . 9 |
7 | eqcom 2466 | . . . . . . . . . 10 | |
8 | vex 3112 | . . . . . . . . . . 11 | |
9 | vex 3112 | . . . . . . . . . . 11 | |
10 | vex 3112 | . . . . . . . . . . 11 | |
11 | 8, 9, 10 | otth2 4733 | . . . . . . . . . 10 |
12 | 7, 11 | bitri 249 | . . . . . . . . 9 |
13 | 6, 12 | syl6bb 261 | . . . . . . . 8 |
14 | 13 | anbi1d 704 | . . . . . . 7 |
15 | eloprabga.1 | . . . . . . . 8 | |
16 | 15 | pm5.32i 637 | . . . . . . 7 |
17 | 14, 16 | syl6bb 261 | . . . . . 6 |
18 | 17 | 3exbidv 1717 | . . . . 5 |
19 | df-oprab 6300 | . . . . . . . . 9 | |
20 | 19 | eleq2i 2535 | . . . . . . . 8 |
21 | abid 2444 | . . . . . . . 8 | |
22 | 20, 21 | bitr2i 250 | . . . . . . 7 |
23 | eleq1 2529 | . . . . . . 7 | |
24 | 22, 23 | syl5bb 257 | . . . . . 6 |
25 | 24 | adantl 466 | . . . . 5 |
26 | elisset 3120 | . . . . . . . . . 10 | |
27 | elisset 3120 | . . . . . . . . . 10 | |
28 | elisset 3120 | . . . . . . . . . 10 | |
29 | 26, 27, 28 | 3anim123i 1181 | . . . . . . . . 9 |
30 | eeeanv 1989 | . . . . . . . . 9 | |
31 | 29, 30 | sylibr 212 | . . . . . . . 8 |
32 | 31 | biantrurd 508 | . . . . . . 7 |
33 | 19.41vvv 1773 | . . . . . . 7 | |
34 | 32, 33 | syl6rbbr 264 | . . . . . 6 |
35 | 34 | adantr 465 | . . . . 5 |
36 | 18, 25, 35 | 3bitr3d 283 | . . . 4 |
37 | 36 | expcom 435 | . . 3 |
38 | 4, 37 | vtocle 3183 | . 2 |
39 | 1, 2, 3, 38 | syl3an 1270 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
cvv 3109
<. cop 4035 { coprab 6297 |
This theorem is referenced by: eloprabg 6390 ovigg 6423 vdwpc 14498 isrgra 24926 isrusgra 24927 elmpps 28933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-oprab 6300 |
Copyright terms: Public domain | W3C validator |