![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eloprabi | Unicode version |
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
eloprabi.1 | |
eloprabi.2 | |
eloprabi.3 |
Ref | Expression |
---|---|
eloprabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2461 | . . . . . 6 | |
2 | 1 | anbi1d 704 | . . . . 5 |
3 | 2 | 3exbidv 1717 | . . . 4 |
4 | df-oprab 6300 | . . . 4 | |
5 | 3, 4 | elab2g 3248 | . . 3 |
6 | 5 | ibi 241 | . 2 |
7 | opex 4716 | . . . . . . . . . . 11 | |
8 | vex 3112 | . . . . . . . . . . 11 | |
9 | 7, 8 | op1std 6810 | . . . . . . . . . 10 |
10 | 9 | fveq2d 5875 | . . . . . . . . 9 |
11 | vex 3112 | . . . . . . . . . 10 | |
12 | vex 3112 | . . . . . . . . . 10 | |
13 | 11, 12 | op1st 6808 | . . . . . . . . 9 |
14 | 10, 13 | syl6req 2515 | . . . . . . . 8 |
15 | eloprabi.1 | . . . . . . . 8 | |
16 | 14, 15 | syl 16 | . . . . . . 7 |
17 | 9 | fveq2d 5875 | . . . . . . . . 9 |
18 | 11, 12 | op2nd 6809 | . . . . . . . . 9 |
19 | 17, 18 | syl6req 2515 | . . . . . . . 8 |
20 | eloprabi.2 | . . . . . . . 8 | |
21 | 19, 20 | syl 16 | . . . . . . 7 |
22 | 7, 8 | op2ndd 6811 | . . . . . . . . 9 |
23 | 22 | eqcomd 2465 | . . . . . . . 8 |
24 | eloprabi.3 | . . . . . . . 8 | |
25 | 23, 24 | syl 16 | . . . . . . 7 |
26 | 16, 21, 25 | 3bitrd 279 | . . . . . 6 |
27 | 26 | biimpa 484 | . . . . 5 |
28 | 27 | exlimiv 1722 | . . . 4 |
29 | 28 | exlimiv 1722 | . . 3 |
30 | 29 | exlimiv 1722 | . 2 |
31 | 6, 30 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 <. cop 4035 ` cfv 5593
{ coprab 6297 c1st 6798
c2nd 6799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-oprab 6300 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |