![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elovmpt2rab | Unicode version |
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elovmpt2rab.o | |
elovmpt2rab.v |
Ref | Expression |
---|---|
elovmpt2rab |
M
,, ,,, ,,, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpt2rab.o | . . 3 | |
2 | 1 | elmpt2cl 6517 | . 2 |
3 | 1 | a1i 11 | . . . . 5 |
4 | sbceq1a 3338 | . . . . . . . 8 | |
5 | sbceq1a 3338 | . . . . . . . 8 | |
6 | 4, 5 | sylan9bbr 700 | . . . . . . 7 |
7 | 6 | adantl 466 | . . . . . 6 |
8 | 7 | rabbidv 3101 | . . . . 5 |
9 | eqidd 2458 | . . . . 5 | |
10 | simpl 457 | . . . . 5 | |
11 | simpr 461 | . . . . 5 | |
12 | elovmpt2rab.v | . . . . . 6 | |
13 | rabexg 4602 | . . . . . 6 | |
14 | 12, 13 | syl 16 | . . . . 5 |
15 | nfcv 2619 | . . . . . . 7 | |
16 | 15 | nfel1 2635 | . . . . . 6 |
17 | nfcv 2619 | . . . . . . 7 | |
18 | 17 | nfel1 2635 | . . . . . 6 |
19 | 16, 18 | nfan 1928 | . . . . 5 |
20 | nfcv 2619 | . . . . . . 7 | |
21 | 20 | nfel1 2635 | . . . . . 6 |
22 | nfcv 2619 | . . . . . . 7 | |
23 | 22 | nfel1 2635 | . . . . . 6 |
24 | 21, 23 | nfan 1928 | . . . . 5 |
25 | nfsbc1v 3347 | . . . . . 6 | |
26 | nfcv 2619 | . . . . . 6 | |
27 | 25, 26 | nfrab 3039 | . . . . 5 |
28 | nfsbc1v 3347 | . . . . . . 7 | |
29 | 20, 28 | nfsbc 3349 | . . . . . 6 |
30 | nfcv 2619 | . . . . . 6 | |
31 | 29, 30 | nfrab 3039 | . . . . 5 |
32 | 3, 8, 9, 10, 11, 14, 19, 24, 20, 17, 27, 31 | ovmpt2dxf 6428 | . . . 4 |
33 | 32 | eleq2d 2527 | . . 3 |
34 | elrabi 3254 | . . . . 5 | |
35 | df-3an 975 | . . . . . 6 | |
36 | 35 | simplbi2com 627 | . . . . 5 |
37 | 34, 36 | syl 16 | . . . 4 |
38 | 37 | com12 31 | . . 3 |
39 | 33, 38 | sylbid 215 | . 2 |
40 | 2, 39 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 { crab 2811 cvv 3109
[. wsbc 3327 (class class class)co 6296
e. cmpt2 6298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |