![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elpwun | Unicode version |
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 |
Ref | Expression |
---|---|
elpwun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | elex 3118 | . . 3 | |
3 | eldifpw.1 | . . . 4 | |
4 | difex2 6607 | . . . 4 | |
5 | 3, 4 | ax-mp 5 | . . 3 |
6 | 2, 5 | sylibr 212 | . 2 |
7 | elpwg 4020 | . . 3 | |
8 | difexg 4600 | . . . . 5 | |
9 | elpwg 4020 | . . . . 5 | |
10 | 8, 9 | syl 16 | . . . 4 |
11 | uncom 3647 | . . . . . 6 | |
12 | 11 | sseq2i 3528 | . . . . 5 |
13 | ssundif 3911 | . . . . 5 | |
14 | 12, 13 | bitri 249 | . . . 4 |
15 | 10, 14 | syl6rbbr 264 | . . 3 |
16 | 7, 15 | bitrd 253 | . 2 |
17 | 1, 6, 16 | pm5.21nii 353 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 e. wcel 1818
cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
~P cpw 4012 |
This theorem is referenced by: pwfilem 7834 elrfi 30626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-pw 4014 df-sn 4030 df-pr 4032 df-uni 4250 |
Copyright terms: Public domain | W3C validator |