![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elrab3t | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 3258.) (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
elrab3t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2816 | . . 3 | |
2 | 1 | eleq2i 2535 | . 2 |
3 | simpr 461 | . . 3 | |
4 | nfa1 1897 | . . . . 5 | |
5 | nfv 1707 | . . . . 5 | |
6 | 4, 5 | nfan 1928 | . . . 4 |
7 | simpl 457 | . . . . . 6 | |
8 | 7 | 19.21bi 1869 | . . . . 5 |
9 | eleq1 2529 | . . . . . . . . . 10 | |
10 | 9 | biimparc 487 | . . . . . . . . 9 |
11 | 10 | biantrurd 508 | . . . . . . . 8 |
12 | 11 | bibi1d 319 | . . . . . . 7 |
13 | 12 | pm5.74da 687 | . . . . . 6 |
14 | 13 | adantl 466 | . . . . 5 |
15 | 8, 14 | mpbid 210 | . . . 4 |
16 | 6, 15 | alrimi 1877 | . . 3 |
17 | elabgt 3243 | . . 3 | |
18 | 3, 16, 17 | syl2anc 661 | . 2 |
19 | 2, 18 | syl5bb 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 { cab 2442 { crab 2811 |
This theorem is referenced by: f1oresrab 6063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 |
Copyright terms: Public domain | W3C validator |