![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elrabf | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
Ref | Expression |
---|---|
elrabf.1 | |
elrabf.2 | |
elrabf.3 | |
elrabf.4 |
Ref | Expression |
---|---|
elrabf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | elex 3118 | . . 3 | |
3 | 2 | adantr 465 | . 2 |
4 | df-rab 2816 | . . . 4 | |
5 | 4 | eleq2i 2535 | . . 3 |
6 | elrabf.1 | . . . 4 | |
7 | elrabf.2 | . . . . . 6 | |
8 | 6, 7 | nfel 2632 | . . . . 5 |
9 | elrabf.3 | . . . . 5 | |
10 | 8, 9 | nfan 1928 | . . . 4 |
11 | eleq1 2529 | . . . . 5 | |
12 | elrabf.4 | . . . . 5 | |
13 | 11, 12 | anbi12d 710 | . . . 4 |
14 | 6, 10, 13 | elabgf 3244 | . . 3 |
15 | 5, 14 | syl5bb 257 | . 2 |
16 | 1, 3, 15 | pm5.21nii 353 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/ wnf 1616
e. wcel 1818 { cab 2442 F/_ wnfc 2605
{ crab 2811 cvv 3109 |
This theorem is referenced by: elrab 3257 rabasiun 4334 rabxfrd 4673 onminsb 6634 nnawordex 7305 tskwe 8352 rabssnn0fi 12095 iundisj 21958 iundisjf 27448 iundisjfi 27601 sltval2 29416 nobndlem5 29456 rfcnpre3 31408 rfcnpre4 31409 stoweidlem26 31808 stoweidlem27 31809 stoweidlem31 31813 stoweidlem34 31816 stoweidlem51 31833 stoweidlem52 31834 stoweidlem59 31841 fourierdlem20 31909 fourierdlem79 31968 bnj1388 34089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 |
Copyright terms: Public domain | W3C validator |