MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrint2 Unicode version

Theorem elrint2 4084
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint2
Distinct variable groups:   ,   ,
Allowed substitution hint:   ( )

Proof of Theorem elrint2
StepHypRef Expression
1 elrint 4083 . 2
21baib 872 1
Colors of variables: wff set class
Syntax hints:  ->wi 4  <->wb 177  e.wcel 1725  A.wral 2697  i^icin 3311  |^|cint 4042
This theorem is referenced by:  mreacs  13875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-in 3319  df-int 4043
  Copyright terms: Public domain W3C validator