Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrint2 Unicode version

Theorem elrint2 4121
 Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint2
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem elrint2
StepHypRef Expression
1 elrint 4120 . 2
21baib 873 1
 Colors of variables: wff set class Syntax hints:  ->wi 4  <->wb 178  e.wcel 1728  A.wral 2712  i^icin 3308  |^|cint 4079 This theorem is referenced by:  mreacs  13934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2717  df-v 2967  df-in 3316  df-int 4080
 Copyright terms: Public domain W3C validator