Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn2g Unicode version

Theorem elrn2g 5198
 Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
elrn2g
Distinct variable groups:   ,   ,

Proof of Theorem elrn2g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opeq2 4218 . . . 4
21eleq1d 2526 . . 3
32exbidv 1714 . 2
4 dfrn3 5197 . 2
53, 4elab2g 3248 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  E.wex 1612  e.wcel 1818  <.cop 4035  rancrn 5005 This theorem is referenced by:  elrng  5199  fvrnressn  6086  fo2ndf  6907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-cnv 5012  df-dm 5014  df-rn 5015
 Copyright terms: Public domain W3C validator