![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elsnc2g | Unicode version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that , rather than , be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsnc2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4054 | . 2 | |
2 | snidg 4055 | . . 3 | |
3 | eleq1 2529 | . . 3 | |
4 | 2, 3 | syl5ibrcom 222 | . 2 |
5 | 1, 4 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { csn 4029 |
This theorem is referenced by: elsnc2 4060 elsuc2g 4951 mptiniseg 5506 extmptsuppeq 6943 fzosplitsni 11920 limcco 22297 ply1termlem 22600 stirlinglem8 31863 dirkercncflem2 31886 elpmapat 35488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sn 4030 |
Copyright terms: Public domain | W3C validator |