![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eltsk2g | Unicode version |
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
eltsk2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 9149 | . 2 | |
2 | nfra1 2838 | . . . . . . 7 | |
3 | pweq 4015 | . . . . . . . . . . . 12 | |
4 | 3 | sseq1d 3530 | . . . . . . . . . . 11 |
5 | 4 | rspccva 3209 | . . . . . . . . . 10 |
6 | 5 | adantlr 714 | . . . . . . . . 9 |
7 | vex 3112 | . . . . . . . . . . . 12 | |
8 | 7 | pwex 4635 | . . . . . . . . . . 11 |
9 | 8 | elpw 4018 | . . . . . . . . . 10 |
10 | ssel 3497 | . . . . . . . . . 10 | |
11 | 9, 10 | syl5bir 218 | . . . . . . . . 9 |
12 | 6, 11 | syl 16 | . . . . . . . 8 |
13 | 12 | rexlimdva 2949 | . . . . . . 7 |
14 | 2, 13 | ralimdaa 2859 | . . . . . 6 |
15 | 14 | imdistani 690 | . . . . 5 |
16 | r19.26 2984 | . . . . 5 | |
17 | r19.26 2984 | . . . . 5 | |
18 | 15, 16, 17 | 3imtr4i 266 | . . . 4 |
19 | ssid 3522 | . . . . . . 7 | |
20 | sseq2 3525 | . . . . . . . 8 | |
21 | 20 | rspcev 3210 | . . . . . . 7 |
22 | 19, 21 | mpan2 671 | . . . . . 6 |
23 | 22 | anim2i 569 | . . . . 5 |
24 | 23 | ralimi 2850 | . . . 4 |
25 | 18, 24 | impbii 188 | . . 3 |
26 | 25 | anbi1i 695 | . 2 |
27 | 1, 26 | syl6bb 261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
~P cpw 4012 class class class wbr 4452
cen 7533 ctsk 9147 |
This theorem is referenced by: tskpw 9152 0tsk 9154 inttsk 9173 inatsk 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |