Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskg Unicode version

Theorem eltskg 9149
 Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
eltskg
Distinct variable group:   ,,

Proof of Theorem eltskg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sseq2 3525 . . . . 5
2 rexeq 3055 . . . . 5
31, 2anbi12d 710 . . . 4
43raleqbi1dv 3062 . . 3
5 pweq 4015 . . . 4
6 breq2 4456 . . . . 5
7 eleq2 2530 . . . . 5
86, 7orbi12d 709 . . . 4
95, 8raleqbidv 3068 . . 3
104, 9anbi12d 710 . 2
11 df-tsk 9148 . 2
1210, 11elab2g 3248 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807  E.wrex 2808  C_wss 3475  ~Pcpw 4012   class class class wbr 4452   cen 7533   ctsk 9147 This theorem is referenced by:  eltsk2g  9150  tskpwss  9151  tsken  9153  grothtsk  9234 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-tsk 9148
 Copyright terms: Public domain W3C validator