![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elvvv | Unicode version |
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.) |
Ref | Expression |
---|---|
elvvv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5021 | . 2 | |
2 | anass 649 | . . . . 5 | |
3 | 19.42vv 1777 | . . . . . 6 | |
4 | ancom 450 | . . . . . . 7 | |
5 | 4 | 2exbii 1668 | . . . . . 6 |
6 | vex 3112 | . . . . . . . 8 | |
7 | 6 | biantru 505 | . . . . . . 7 |
8 | elvv 5063 | . . . . . . . 8 | |
9 | 8 | anbi2i 694 | . . . . . . 7 |
10 | 7, 9 | bitr3i 251 | . . . . . 6 |
11 | 3, 5, 10 | 3bitr4ri 278 | . . . . 5 |
12 | 2, 11 | bitr3i 251 | . . . 4 |
13 | 12 | 2exbii 1668 | . . 3 |
14 | exrot4 1853 | . . . 4 | |
15 | excom 1849 | . . . . . 6 | |
16 | opex 4716 | . . . . . . . 8 | |
17 | opeq1 4217 | . . . . . . . . 9 | |
18 | 17 | eqeq2d 2471 | . . . . . . . 8 |
19 | 16, 18 | ceqsexv 3146 | . . . . . . 7 |
20 | 19 | exbii 1667 | . . . . . 6 |
21 | 15, 20 | bitri 249 | . . . . 5 |
22 | 21 | 2exbii 1668 | . . . 4 |
23 | 14, 22 | bitr3i 251 | . . 3 |
24 | 13, 23 | bitri 249 | . 2 |
25 | 1, 24 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
cvv 3109
<. cop 4035 X. cxp 5002 |
This theorem is referenced by: ssrelrel 5108 dftpos3 6992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 |
Copyright terms: Public domain | W3C validator |