![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elxp5 | Unicode version |
Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 6744 when the double intersection does not create class existence problems (caused by int0 4300). (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
elxp5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 5021 | . 2 | |
2 | sneq 4039 | . . . . . . . . . . . 12 | |
3 | 2 | rneqd 5235 | . . . . . . . . . . 11 |
4 | 3 | unieqd 4259 | . . . . . . . . . 10 |
5 | vex 3112 | . . . . . . . . . . 11 | |
6 | vex 3112 | . . . . . . . . . . 11 | |
7 | 5, 6 | op2nda 5498 | . . . . . . . . . 10 |
8 | 4, 7 | syl6req 2515 | . . . . . . . . 9 |
9 | 8 | pm4.71ri 633 | . . . . . . . 8 |
10 | 9 | anbi1i 695 | . . . . . . 7 |
11 | anass 649 | . . . . . . 7 | |
12 | 10, 11 | bitri 249 | . . . . . 6 |
13 | 12 | exbii 1667 | . . . . 5 |
14 | snex 4693 | . . . . . . . 8 | |
15 | 14 | rnex 6734 | . . . . . . 7 |
16 | 15 | uniex 6596 | . . . . . 6 |
17 | opeq2 4218 | . . . . . . . 8 | |
18 | 17 | eqeq2d 2471 | . . . . . . 7 |
19 | eleq1 2529 | . . . . . . . 8 | |
20 | 19 | anbi2d 703 | . . . . . . 7 |
21 | 18, 20 | anbi12d 710 | . . . . . 6 |
22 | 16, 21 | ceqsexv 3146 | . . . . 5 |
23 | 13, 22 | bitri 249 | . . . 4 |
24 | inteq 4289 | . . . . . . . 8 | |
25 | 24 | inteqd 4291 | . . . . . . 7 |
26 | 5, 16 | op1stb 4722 | . . . . . . 7 |
27 | 25, 26 | syl6req 2515 | . . . . . 6 |
28 | 27 | pm4.71ri 633 | . . . . 5 |
29 | 28 | anbi1i 695 | . . . 4 |
30 | anass 649 | . . . 4 | |
31 | 23, 29, 30 | 3bitri 271 | . . 3 |
32 | 31 | exbii 1667 | . 2 |
33 | eqvisset 3117 | . . . . 5 | |
34 | 33 | adantr 465 | . . . 4 |
35 | 34 | exlimiv 1722 | . . 3 |
36 | elex 3118 | . . . 4 | |
37 | 36 | ad2antrl 727 | . . 3 |
38 | opeq1 4217 | . . . . . 6 | |
39 | 38 | eqeq2d 2471 | . . . . 5 |
40 | eleq1 2529 | . . . . . 6 | |
41 | 40 | anbi1d 704 | . . . . 5 |
42 | 39, 41 | anbi12d 710 | . . . 4 |
43 | 42 | ceqsexgv 3232 | . . 3 |
44 | 35, 37, 43 | pm5.21nii 353 | . 2 |
45 | 1, 32, 44 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
cvv 3109
{ csn 4029 <. cop 4035 U. cuni 4249
|^| cint 4286
X. cxp 5002 ran crn 5005 |
This theorem is referenced by: xpnnenOLD 13943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 |
Copyright terms: Public domain | W3C validator |