![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > embantd | Unicode version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | |
embantd.2 |
Ref | Expression |
---|---|
embantd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 | |
2 | embantd.2 | . . 3 | |
3 | 2 | imim2d 52 | . 2 |
4 | 1, 3 | mpid 41 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: a2and 811 mo2v 2289 mo2vOLD 2290 mo2vOLDOLD 2291 el 4634 findcard2d 7782 cantnflem1 8129 cantnflem1OLD 8152 ackbij1lem16 8636 fin1a2lem10 8810 inar1 9174 grur1a 9218 sqrt2irr 13982 exprmfct 14251 pockthg 14424 drsdirfi 15567 obslbs 18761 mdetunilem9 19122 iscnp4 19764 isreg2 19878 dfcon2 19920 1stccnp 19963 flftg 20497 cnpfcf 20542 tsmsxp 20657 nmoleub 21238 vitalilem2 22018 vitalilem5 22021 c1lip1 22398 aalioulem6 22733 jensen 23318 2sqlem6 23644 dchrisumlem3 23676 pntlem3 23794 cvmlift2lem1 28747 cvmlift2lem12 28759 mclsax 28929 nn0prpwlem 30140 lindslinindsimp1 33058 bnj849 33983 bj-el 34382 mapdordlem2 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |