![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ener | Unicode version |
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
ener |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 7541 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | bren 7545 | . . . . 5 | |
4 | f1ocnv 5833 | . . . . . . 7 | |
5 | vex 3112 | . . . . . . . 8 | |
6 | vex 3112 | . . . . . . . 8 | |
7 | f1oen2g 7552 | . . . . . . . 8 | |
8 | 5, 6, 7 | mp3an12 1314 | . . . . . . 7 |
9 | 4, 8 | syl 16 | . . . . . 6 |
10 | 9 | exlimiv 1722 | . . . . 5 |
11 | 3, 10 | sylbi 195 | . . . 4 |
12 | 11 | adantl 466 | . . 3 |
13 | bren 7545 | . . . . 5 | |
14 | bren 7545 | . . . . 5 | |
15 | eeanv 1988 | . . . . . 6 | |
16 | f1oco 5843 | . . . . . . . . 9 | |
17 | 16 | ancoms 453 | . . . . . . . 8 |
18 | vex 3112 | . . . . . . . . 9 | |
19 | f1oen2g 7552 | . . . . . . . . 9 | |
20 | 6, 18, 19 | mp3an12 1314 | . . . . . . . 8 |
21 | 17, 20 | syl 16 | . . . . . . 7 |
22 | 21 | exlimivv 1723 | . . . . . 6 |
23 | 15, 22 | sylbir 213 | . . . . 5 |
24 | 13, 14, 23 | syl2anb 479 | . . . 4 |
25 | 24 | adantl 466 | . . 3 |
26 | 6 | enref 7568 | . . . . 5 |
27 | 6, 26 | 2th 239 | . . . 4 |
28 | 27 | a1i 11 | . . 3 |
29 | 2, 12, 25, 28 | iserd 7356 | . 2 |
30 | 29 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
wtru 1396 E. wex 1612 e. wcel 1818
cvv 3109
class class class wbr 4452 `' ccnv 5003
o. ccom 5008 Rel wrel 5009 -1-1-onto-> wf1o 5592 Er wer 7327 cen 7533 |
This theorem is referenced by: ensymb 7583 entr 7587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-er 7330 df-en 7537 |
Copyright terms: Public domain | W3C validator |