![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > enfixsn | Unicode version |
Description: Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
enfixsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 998 | . . 3 | |
2 | bren 7545 | . . 3 | |
3 | 1, 2 | sylib 196 | . 2 |
4 | relen 7541 | . . . . . . . 8 | |
5 | 4 | brrelex2i 5046 | . . . . . . 7 |
6 | 5 | 3ad2ant3 1019 | . . . . . 6 |
7 | 6 | adantr 465 | . . . . 5 |
8 | f1of 5821 | . . . . . . 7 | |
9 | 8 | adantl 466 | . . . . . 6 |
10 | simpl1 999 | . . . . . 6 | |
11 | 9, 10 | ffvelrnd 6032 | . . . . 5 |
12 | simpl2 1000 | . . . . 5 | |
13 | difsnen 7619 | . . . . 5 | |
14 | 7, 11, 12, 13 | syl3anc 1228 | . . . 4 |
15 | bren 7545 | . . . 4 | |
16 | 14, 15 | sylib 196 | . . 3 |
17 | fvex 5881 | . . . . . . . . . . 11 | |
18 | 17 | a1i 11 | . . . . . . . . . 10 |
19 | simpl2 1000 | . . . . . . . . . 10 | |
20 | f1osng 5859 | . . . . . . . . . 10 | |
21 | 18, 19, 20 | syl2anc 661 | . . . . . . . . 9 |
22 | simprr 757 | . . . . . . . . 9 | |
23 | disjdif 3900 | . . . . . . . . . 10 | |
24 | 23 | a1i 11 | . . . . . . . . 9 |
25 | disjdif 3900 | . . . . . . . . . 10 | |
26 | 25 | a1i 11 | . . . . . . . . 9 |
27 | f1oun 5840 | . . . . . . . . 9 | |
28 | 21, 22, 24, 26, 27 | syl22anc 1229 | . . . . . . . 8 |
29 | 8 | ad2antrl 727 | . . . . . . . . . . 11 |
30 | simpl1 999 | . . . . . . . . . . 11 | |
31 | 29, 30 | ffvelrnd 6032 | . . . . . . . . . 10 |
32 | uncom 3647 | . . . . . . . . . . 11 | |
33 | difsnid 4176 | . . . . . . . . . . 11 | |
34 | 32, 33 | syl5eq 2510 | . . . . . . . . . 10 |
35 | 31, 34 | syl 16 | . . . . . . . . 9 |
36 | uncom 3647 | . . . . . . . . . . 11 | |
37 | difsnid 4176 | . . . . . . . . . . 11 | |
38 | 36, 37 | syl5eq 2510 | . . . . . . . . . 10 |
39 | 19, 38 | syl 16 | . . . . . . . . 9 |
40 | f1oeq23 5815 | . . . . . . . . 9 | |
41 | 35, 39, 40 | syl2anc 661 | . . . . . . . 8 |
42 | 28, 41 | mpbid 210 | . . . . . . 7 |
43 | simprl 756 | . . . . . . 7 | |
44 | f1oco 5843 | . . . . . . 7 | |
45 | 42, 43, 44 | syl2anc 661 | . . . . . 6 |
46 | f1ofn 5822 | . . . . . . . . 9 | |
47 | 46 | ad2antrl 727 | . . . . . . . 8 |
48 | fvco2 5948 | . . . . . . . 8 | |
49 | 47, 30, 48 | syl2anc 661 | . . . . . . 7 |
50 | f1ofn 5822 | . . . . . . . . 9 | |
51 | 21, 50 | syl 16 | . . . . . . . 8 |
52 | f1ofn 5822 | . . . . . . . . 9 | |
53 | 52 | ad2antll 728 | . . . . . . . 8 |
54 | 17 | snid 4057 | . . . . . . . . 9 |
55 | 54 | a1i 11 | . . . . . . . 8 |
56 | fvun1 5944 | . . . . . . . 8 | |
57 | 51, 53, 24, 55, 56 | syl112anc 1232 | . . . . . . 7 |
58 | fvsng 6105 | . . . . . . . 8 | |
59 | 18, 19, 58 | syl2anc 661 | . . . . . . 7 |
60 | 49, 57, 59 | 3eqtrd 2502 | . . . . . 6 |
61 | snex 4693 | . . . . . . . . 9 | |
62 | vex 3112 | . . . . . . . . 9 | |
63 | 61, 62 | unex 6598 | . . . . . . . 8 |
64 | vex 3112 | . . . . . . . 8 | |
65 | 63, 64 | coex 6752 | . . . . . . 7 |
66 | f1oeq1 5812 | . . . . . . . 8 | |
67 | fveq1 5870 | . . . . . . . . 9 | |
68 | 67 | eqeq1d 2459 | . . . . . . . 8 |
69 | 66, 68 | anbi12d 710 | . . . . . . 7 |
70 | 65, 69 | spcev 3201 | . . . . . 6 |
71 | 45, 60, 70 | syl2anc 661 | . . . . 5 |
72 | 71 | expr 615 | . . . 4 |
73 | 72 | exlimdv 1724 | . . 3 |
74 | 16, 73 | mpd 15 | . 2 |
75 | 3, 74 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 o. ccom 5008
Fn wfn 5588 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 cen 7533 |
This theorem is referenced by: mapfien2 7888 mapfien2OLD 31042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-1o 7149 df-er 7330 df-en 7537 |
Copyright terms: Public domain | W3C validator |