![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > enp1ilem | Unicode version |
Description: Lemma for uses of enp1i 7775. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
enp1ilem.1 |
Ref | Expression |
---|---|
enp1ilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3650 | . . 3 | |
2 | undif1 3903 | . . 3 | |
3 | uncom 3647 | . . . 4 | |
4 | enp1ilem.1 | . . . 4 | |
5 | 3, 4 | eqtr4i 2489 | . . 3 |
6 | 1, 2, 5 | 3eqtr3g 2521 | . 2 |
7 | snssi 4174 | . . . 4 | |
8 | ssequn2 3676 | . . . 4 | |
9 | 7, 8 | sylib 196 | . . 3 |
10 | 9 | eqeq1d 2459 | . 2 |
11 | 6, 10 | syl5ib 219 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 \ cdif 3472 u. cun 3473
C_ wss 3475 { csn 4029 |
This theorem is referenced by: en2 7776 en3 7777 en4 7778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 |
Copyright terms: Public domain | W3C validator |