![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > epelg | Unicode version |
Description: The epsilon relation and membership are the same. General version of epel 4799. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
epelg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4453 | . . . 4 | |
2 | elopab 4760 | . . . . . 6 | |
3 | vex 3112 | . . . . . . . . . . 11 | |
4 | vex 3112 | . . . . . . . . . . 11 | |
5 | 3, 4 | pm3.2i 455 | . . . . . . . . . 10 |
6 | opeqex 4743 | . . . . . . . . . 10 | |
7 | 5, 6 | mpbiri 233 | . . . . . . . . 9 |
8 | 7 | simpld 459 | . . . . . . . 8 |
9 | 8 | adantr 465 | . . . . . . 7 |
10 | 9 | exlimivv 1723 | . . . . . 6 |
11 | 2, 10 | sylbi 195 | . . . . 5 |
12 | df-eprel 4796 | . . . . 5 | |
13 | 11, 12 | eleq2s 2565 | . . . 4 |
14 | 1, 13 | sylbi 195 | . . 3 |
15 | 14 | a1i 11 | . 2 |
16 | elex 3118 | . . 3 | |
17 | 16 | a1i 11 | . 2 |
18 | eleq12 2533 | . . . 4 | |
19 | 18, 12 | brabga 4766 | . . 3 |
20 | 19 | expcom 435 | . 2 |
21 | 15, 17, 20 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
<. cop 4035 class class class wbr 4452
{ copab 4509 cep 4794 |
This theorem is referenced by: epelc 4798 efrirr 4865 efrn2lp 4866 epne3 6616 cnfcomlem 8164 cnfcomlemOLD 8172 fpwwe2lem6 9034 ltpiord 9286 orvcelval 28407 predep 29272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-eprel 4796 |
Copyright terms: Public domain | W3C validator |