![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqeq12i | Unicode version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | |
eqeq12i.2 |
Ref | Expression |
---|---|
eqeq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 | |
2 | 1 | eqeq1i 2464 | . 2 |
3 | eqeq12i.2 | . . 3 | |
4 | 3 | eqeq2i 2475 | . 2 |
5 | 2, 4 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395 |
This theorem is referenced by: neeq12i 2746 rabbi 3036 unineq 3747 sbceqg 3825 preqr2 4205 iuneq12df 4354 otth 4734 otthg 4735 rncoeq 5271 fresaunres1 5763 eqfnov 6408 mpt22eqb 6411 f1o2ndf1 6908 ecopovsym 7432 karden 8334 adderpqlem 9353 mulerpqlem 9354 addcmpblnr 9467 ax1ne0 9558 addid1 9781 sq11i 12258 nn0opth2i 12351 oppgcntz 16399 islpir 17897 evlsval 18188 volfiniun 21957 dvmptfsum 22376 axlowdimlem13 24257 usgraidx2v 24393 el2wlkonotot0 24872 pjneli 26641 iuneq12daf 27425 sspred 29252 wfrlem5 29347 frrlem5 29391 sltval2 29416 sltsolem1 29428 altopthsn 29611 iscrngo2 30395 sbceqi 30513 fphpd 30750 dvnprodlem3 31745 usgedgvadf1 32415 usgedgvadf1ALT 32418 rabeqsn 32919 onfrALTlem5 33314 onfrALTlem4 33315 onfrALTlem5VD 33685 onfrALTlem4VD 33686 bnj553 33956 bnj1253 34073 bj-2upleq 34570 cdleme18d 36020 rp-fakeuninass 37741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 |
Copyright terms: Public domain | W3C validator |