![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqer | Unicode version |
Description: Equivalence relation
involving equality of dependent classes A ( x )
and ( ) . (Contributed
by NM, 17-Mar-2008.) (Revised by Mario
Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 | |
2 | 1 | relopabi 5133 | . . . 4 |
3 | 2 | a1i 11 | . . 3 |
4 | id 22 | . . . . . 6 | |
5 | 4 | eqcomd 2465 | . . . . 5 |
6 | eqer.1 | . . . . . 6 | |
7 | 6, 1 | eqerlem 7362 | . . . . 5 |
8 | 6, 1 | eqerlem 7362 | . . . . 5 |
9 | 5, 7, 8 | 3imtr4i 266 | . . . 4 |
10 | 9 | adantl 466 | . . 3 |
11 | eqtr 2483 | . . . . 5 | |
12 | 6, 1 | eqerlem 7362 | . . . . . 6 |
13 | 7, 12 | anbi12i 697 | . . . . 5 |
14 | 6, 1 | eqerlem 7362 | . . . . 5 |
15 | 11, 13, 14 | 3imtr4i 266 | . . . 4 |
16 | 15 | adantl 466 | . . 3 |
17 | vex 3112 | . . . . 5 | |
18 | eqid 2457 | . . . . . 6 | |
19 | 6, 1 | eqerlem 7362 | . . . . . 6 |
20 | 18, 19 | mpbir 209 | . . . . 5 |
21 | 17, 20 | 2th 239 | . . . 4 |
22 | 21 | a1i 11 | . . 3 |
23 | 3, 10, 16, 22 | iserd 7356 | . 2 |
24 | 23 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 wtru 1396 e. wcel 1818 cvv 3109
[_ csb 3434 class class class wbr 4452
{ copab 4509 Rel wrel 5009
Er wer 7327 |
This theorem is referenced by: ider 7364 frgpuplem 16790 fneer 30171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-er 7330 |
Copyright terms: Public domain | W3C validator |