![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqfnfv2f | Unicode version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5981 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
eqfnfv2f.1 | |
eqfnfv2f.2 |
Ref | Expression |
---|---|
eqfnfv2f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv 5981 | . 2 | |
2 | eqfnfv2f.1 | . . . . 5 | |
3 | nfcv 2619 | . . . . 5 | |
4 | 2, 3 | nffv 5878 | . . . 4 |
5 | eqfnfv2f.2 | . . . . 5 | |
6 | 5, 3 | nffv 5878 | . . . 4 |
7 | 4, 6 | nfeq 2630 | . . 3 |
8 | nfv 1707 | . . 3 | |
9 | fveq2 5871 | . . . 4 | |
10 | fveq2 5871 | . . . 4 | |
11 | 9, 10 | eqeq12d 2479 | . . 3 |
12 | 7, 8, 11 | cbvral 3080 | . 2 |
13 | 1, 12 | syl6bb 261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/_ wnfc 2605
A. wral 2807 Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: aacllem 33216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |