MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnov Unicode version

Theorem eqfnov 6408
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
eqfnov
Distinct variable groups:   , ,   , ,   , ,   , ,

Proof of Theorem eqfnov
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqfnfv2 5982 . 2
2 fveq2 5871 . . . . . 6
3 fveq2 5871 . . . . . 6
42, 3eqeq12d 2479 . . . . 5
5 df-ov 6299 . . . . . 6
6 df-ov 6299 . . . . . 6
75, 6eqeq12i 2477 . . . . 5
84, 7syl6bbr 263 . . . 4
98ralxp 5149 . . 3
109anbi2i 694 . 2
111, 10syl6bb 261 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  A.wral 2807  <.cop 4035  X.cxp 5002  Fnwfn 5588  `cfv 5593  (class class class)co 6296
This theorem is referenced by:  eqfnov2  6409  ssceq  15195  sspg  25641  ssps  25643  sspmlem  25645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-fv 5601  df-ov 6299
  Copyright terms: Public domain W3C validator