![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqneltrd | Unicode version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | |
eqneltrd.2 |
Ref | Expression |
---|---|
eqneltrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 | |
2 | eqneltrd.1 | . . 3 | |
3 | 2 | eleq1d 2526 | . 2 |
4 | 1, 3 | mtbird 301 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 e. wcel 1818 |
This theorem is referenced by: eqneltrrd 2567 omopth2 7252 fpwwe2 9042 sqrtneglem 13100 mreexmrid 15040 mplcoe1 18127 mplcoe5 18131 mplcoe2OLD 18133 2sqn0 27634 oddfl 31459 znnn0nn 31489 sumnnodd 31636 sinaover2ne0 31668 dvnprodlem1 31743 dirker2re 31874 dirkerdenne0 31875 dirkertrigeqlem3 31882 dirkercncflem1 31885 dirkercncflem2 31886 dirkercncflem4 31888 fouriersw 32014 islln2a 35241 islpln2a 35272 islvol2aN 35316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |