![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqneqall | Unicode version |
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
eqneqall |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2654 | . 2 | |
2 | pm2.24 109 | . 2 | |
3 | 1, 2 | syl5bi 217 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: nonconne 2665 prnebg 4212 elovmpt3imp 6533 bropopvvv 6880 fin1a2lem10 8810 suppssfz 12100 hashrabsn1 12442 hash2prd 12518 hash2pwpr 12519 cshwidxmod 12774 cshwidx0 12776 symgextf1 16446 01eq0ring 17920 mamufacex 18891 mavmulsolcl 19053 chfacfscmulgsum 19361 chfacfpmmulgsum 19365 usgra2edg 24382 wlk0 24761 clwwlkgt0 24771 clwwlknprop 24772 nbhashuvtx1 24915 rusgrasn 24945 frgrawopreglem4 25047 frgraregord13 25119 frgraogt3nreg 25120 tpres 32554 lidldomn1 32727 nzerooringczr 32880 ztprmneprm 32936 suppmptcfin 32972 linc1 33026 lindsrng01 33069 ldepspr 33074 zlmodzxznm 33098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |