![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqrdav | Unicode version |
Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
eqrdav.1 | |
eqrdav.2 | |
eqrdav.3 |
Ref | Expression |
---|---|
eqrdav |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdav.1 | . . . 4 | |
2 | eqrdav.3 | . . . . . 6 | |
3 | 2 | biimpd 207 | . . . . 5 |
4 | 3 | impancom 440 | . . . 4 |
5 | 1, 4 | mpd 15 | . . 3 |
6 | eqrdav.2 | . . . 4 | |
7 | 2 | biimprd 223 | . . . . 5 |
8 | 7 | impancom 440 | . . . 4 |
9 | 6, 8 | mpd 15 | . . 3 |
10 | 5, 9 | impbida 832 | . 2 |
11 | 10 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818 |
This theorem is referenced by: boxcutc 7532 supminf 11198 f1omvdconj 16471 fmucndlem 20794 ballotlemsima 28454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-cleq 2449 |
Copyright terms: Public domain | W3C validator |