![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqrelrel | Unicode version |
Description: Extensionality principle for ordered triples (used by 2-place operations df-oprab 6300), analogous to eqrel 5097. Use relrelss 5536 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) |
Ref | Expression |
---|---|
eqrelrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3677 | . 2 | |
2 | ssrelrel 5108 | . . . 4 | |
3 | ssrelrel 5108 | . . . 4 | |
4 | 2, 3 | bi2anan9 873 | . . 3 |
5 | eqss 3518 | . . 3 | |
6 | 2albiim 1700 | . . . . 5 | |
7 | 6 | albii 1640 | . . . 4 |
8 | 19.26 1680 | . . . 4 | |
9 | 7, 8 | bitri 249 | . . 3 |
10 | 4, 5, 9 | 3bitr4g 288 | . 2 |
11 | 1, 10 | sylbir 213 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 cvv 3109
u. cun 3473 C_ wss 3475 <. cop 4035
X. cxp 5002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 |
Copyright terms: Public domain | W3C validator |