Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsb3 Unicode version

Theorem eqsb3 2577
 Description: Substitution applied to an atomic wff (class version of equsb3 2176). (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb3
Distinct variable group:   ,

Proof of Theorem eqsb3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqsb3lem 2576 . . 3
21sbbii 1746 . 2
3 nfv 1707 . . 3
43sbco2 2158 . 2
5 eqsb3lem 2576 . 2
62, 4, 53bitr3i 275 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  =wceq 1395  [wsb 1739 This theorem is referenced by:  pm13.183  3240  eqsbc3  3367 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449
 Copyright terms: Public domain W3C validator