MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc3r Unicode version

Theorem eqsbc3r 3389
Description: eqsbc3 3367 with setvar variable on right side of equals sign. This proof was automatically generated from the virtual deduction proof eqsbc3rVD 33640 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
eqsbc3r
Distinct variable groups:   ,   ,

Proof of Theorem eqsbc3r
StepHypRef Expression
1 eqcom 2466 . . . . . 6
21sbcbii 3387 . . . . 5
32biimpi 194 . . . 4
4 eqsbc3 3367 . . . 4
53, 4syl5ib 219 . . 3
6 eqcom 2466 . . 3
75, 6syl6ib 226 . 2
8 idd 24 . . . . 5
98, 6syl6ibr 227 . . . 4
109, 4sylibrd 234 . . 3
1110, 2syl6ibr 227 . 2
127, 11impbid 191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  e.wcel 1818  [.wsbc 3327
This theorem is referenced by:  sbcoreleleq  33306  sbcoreleleqVD  33659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator