![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqsbc3r | Unicode version |
Description: eqsbc3 3367 with setvar variable on right side of equals sign. This proof was automatically generated from the virtual deduction proof eqsbc3rVD 33640 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
eqsbc3r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2466 | . . . . . 6 | |
2 | 1 | sbcbii 3387 | . . . . 5 |
3 | 2 | biimpi 194 | . . . 4 |
4 | eqsbc3 3367 | . . . 4 | |
5 | 3, 4 | syl5ib 219 | . . 3 |
6 | eqcom 2466 | . . 3 | |
7 | 5, 6 | syl6ib 226 | . 2 |
8 | idd 24 | . . . . 5 | |
9 | 8, 6 | syl6ibr 227 | . . . 4 |
10 | 9, 4 | sylibrd 234 | . . 3 |
11 | 10, 2 | syl6ibr 227 | . 2 |
12 | 7, 11 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 [. wsbc 3327 |
This theorem is referenced by: sbcoreleleq 33306 sbcoreleleqVD 33659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |