![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqtr2 | Unicode version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqtr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2466 | . 2 | |
2 | eqtr 2483 | . 2 | |
3 | 1, 2 | sylanb 472 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 |
This theorem is referenced by: eqvinc 3226 reusv3i 4659 moop2 4747 relop 5158 restidsing 5335 f0rn0 5775 fliftfun 6210 wrd2ind 12703 fsum2dlem 13585 fprodser 13756 0dvds 14004 4sqlem12 14474 cshwshashlem1 14580 catideu 15072 pj1eu 16714 lspsneu 17769 1marepvmarrepid 19077 mdetunilem6 19119 bwthOLD 19911 qtopeu 20217 qtophmeo 20318 dscmet 21093 isosctrlem2 23153 ppiub 23479 axcgrtr 24218 axeuclid 24266 axcontlem2 24268 usgraedgprv 24376 usgra2edg 24382 usgraedgreu 24388 spthonepeq 24589 wlkdvspthlem 24609 usgra2wlkspthlem1 24619 el2wlkonotot0 24872 2spotdisj 25061 numclwwlkdisj 25080 exidu1 25328 rngoideu 25386 ajmoi 25774 chocunii 26219 3oalem2 26581 adjmo 26751 cdjreui 27351 eqvincg 27374 probun 28358 soseq 29334 sltsolem1 29428 btwnswapid 29667 cncfiooicclem1 31696 usgvincvadeu 32405 usgvincvadeuALT 32408 aacllem 33216 bnj551 33799 bj-snsetex 34521 bj-lsub 34671 bj-bary1lem1 34680 mapdpglem31 37430 frege55b 37924 frege55c 37945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-cleq 2449 |
Copyright terms: Public domain | W3C validator |