MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqtr3 Unicode version

Theorem eqtr3 2485
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2466 . 2
2 eqtr 2483 . 2
31, 2sylan2b 475 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395
This theorem is referenced by:  eueq  3271  euind  3286  reuind  3303  prnebg  4212  preqsn  4213  eusv1  4646  restidsing  5335  xpcan  5448  xpcan2  5449  funopg  5625  foco  5810  mpt2fun  6404  oawordeulem  7222  ixpfi2  7838  wemapso2OLD  7998  wemapso2lem  7999  isf32lem2  8755  fpwwe2lem13  9041  1re  9616  receu  10219  xrlttri  11374  injresinjlem  11925  hash2prd  12518  cshwsexa  12792  fsumparts  13620  odd2np1  14046  prmreclem2  14435  divsfval  14944  isprs  15559  psrn  15839  grpinveu  16084  symgextf1  16446  symgfixf1  16462  efgrelexlemb  16768  lspextmo  17702  evlseu  18185  tgcmp  19901  sqf11  23413  dchrisumlem2  23675  axlowdimlem15  24259  axcontlem2  24268  nbgraf1olem1  24441  spthonepeq  24589  usgrcyclnl2  24641  4cycl4dv  24667  wwlkextinj  24730  numclwlk1lem2f1  25094  grpoinveu  25224  5oalem4  26575  rnbra  27026  xreceu  27618  wfr3g  29342  frr3g  29386  sltsolem1  29428  nocvxminlem  29450  fnsingle  29569  funimage  29578  funtransport  29681  funray  29790  funline  29792  hilbert1.2  29805  lineintmo  29807  prtlem11  30607  prter2  30622  kelac2lem  31010  2ffzoeq  32341  bnj594  33970  bnj953  33997  bj-bary1  34681  cdleme  36286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-cleq 2449
  Copyright terms: Public domain W3C validator