![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > equequ1 | Unicode version |
Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
equequ1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1790 | . 2 | |
2 | equtr 1796 | . 2 | |
3 | 1, 2 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: equequ2 1799 drsb1 2118 equsb3lem 2175 dveeq1-o 2265 dveeq1-o16 2266 axc11n-16 2268 ax12eq 2271 sb8eu 2318 2eu6OLD 2384 euequ1OLD 2387 axext3OLD 2438 reu6 3288 reu7 3294 disjxun 4450 cbviota 5561 dff13f 6167 poxp 6912 unxpdomlem1 7744 unxpdomlem2 7745 aceq0 8520 zfac 8861 axrepndlem1 8988 axpowndlem2OLD 8995 zfcndac 9018 injresinj 11926 fsum2dlem 13585 ramub1lem2 14545 ramcl 14547 symgextf1 16446 mamulid 18943 mamurid 18944 mdetdiagid 19102 mdetunilem9 19122 alexsubALTlem3 20549 ptcmplem2 20553 dscmet 21093 dyadmbllem 22008 opnmbllem 22010 isppw2 23389 frg2wot1 25057 disji2f 27438 disjif2 27442 ghomf1olem 29034 wl-equsb3 30004 mblfinlem1 30051 bfp 30320 fphpd 30750 lcoss 33037 ax6e2nd 33331 ax6e2ndVD 33708 ax6e2ndALT 33730 bj-axext3 34354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |