![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > equs5e | Unicode version |
Description: A property related to substitution that unlike equs5 2092 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) |
Ref | Expression |
---|---|
equs5e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1897 | . 2 | |
2 | hbe1 1839 | . . . . 5 | |
3 | 2 | 19.23bi 1871 | . . . 4 |
4 | ax-12 1854 | . . . 4 | |
5 | 3, 4 | syl5 32 | . . 3 |
6 | 5 | imp 429 | . 2 |
7 | 1, 6 | exlimi 1912 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 |
This theorem is referenced by: sb4e 1998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |