![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > equsal | Unicode version |
Description: A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) |
Ref | Expression |
---|---|
equsal.1 | |
equsal.2 |
Ref | Expression |
---|---|
equsal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.1 | . . 3 | |
2 | 1 | 19.23 1910 | . 2 |
3 | equsal.2 | . . . 4 | |
4 | 3 | pm5.74i 245 | . . 3 |
5 | 4 | albii 1640 | . 2 |
6 | ax6e 2002 | . . 3 | |
7 | 6 | a1bi 337 | . 2 |
8 | 2, 5, 7 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 E. wex 1612 F/ wnf 1616 |
This theorem is referenced by: equsalh 2037 equsex 2038 axc9lem2 2040 dvelimf 2076 sb6x 2125 sb6rf 2166 asymref2 5389 intirr 5390 fun11 5658 pm13.192 31317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |