Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalhw Unicode version

Theorem equsalhw 1945
 Description: Weaker version of equsalh 2037 (requiring distinct variables) without using ax-13 1999. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 28-Dec-2017.)
Hypotheses
Ref Expression
equsalhw.1
equsalhw.2
Assertion
Ref Expression
equsalhw
Distinct variable group:   ,

Proof of Theorem equsalhw
StepHypRef Expression
1 equsalhw.1 . . 3
2119.23h 1911 . 2
3 equsalhw.2 . . . 4
43pm5.74i 245 . . 3
54albii 1640 . 2
6 ax6ev 1749 . . 3
76a1bi 337 . 2
82, 5, 73bitr4i 277 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612 This theorem is referenced by:  dvelimhw  1955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator