MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb1 Unicode version

Theorem equsb1 2107
Description: Substitution applied to an atomic wff. (Contributed by NM, 10-May-1993.)
Assertion
Ref Expression
equsb1

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 2093 . 2
2 id 22 . 2
31, 2mpg 1620 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  [wsb 1739
This theorem is referenced by:  sbequ8ALT  2148  sbie  2149  sbieOLD  2150  pm13.183  3240  exss  4715  sb5ALT  33295  sb5ALTVD  33713  frege54cor1b  37921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-sb 1740
  Copyright terms: Public domain W3C validator