Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3 Unicode version

Theorem equsb3 2176
 Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) Remove dependency on ax-11 1842. (Revised by Wolf Lammen, 21-Sep-2018.)
Assertion
Ref Expression
equsb3
Distinct variable group:   ,

Proof of Theorem equsb3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 equsb3lem 2175 . . 3
21sbbii 1746 . 2
3 sbcom3 2153 . . 3
4 nfv 1707 . . . 4
54sbf 2121 . . 3
63, 5bitri 249 . 2
7 equsb3lem 2175 . 2
82, 6, 73bitr3i 275 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  [wsb 1739 This theorem is referenced by:  sb8eu  2318  sb8euOLD  2319  mo3  2323  sb8iota  5563  mo5f  27383  wl-equsb3  30004  wl-mo3t  30021  wl-sb8eut  30022  sbeqal1  31304  frege55lem1b  37922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
 Copyright terms: Public domain W3C validator