![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > equsb3 | Unicode version |
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) Remove dependency on ax-11 1842. (Revised by Wolf Lammen, 21-Sep-2018.) |
Ref | Expression |
---|---|
equsb3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb3lem 2175 | . . 3 | |
2 | 1 | sbbii 1746 | . 2 |
3 | sbcom3 2153 | . . 3 | |
4 | nfv 1707 | . . . 4 | |
5 | 4 | sbf 2121 | . . 3 |
6 | 3, 5 | bitri 249 | . 2 |
7 | equsb3lem 2175 | . 2 | |
8 | 2, 6, 7 | 3bitr3i 275 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 [ wsb 1739 |
This theorem is referenced by: sb8eu 2318 sb8euOLD 2319 mo3 2323 sb8iota 5563 mo5f 27383 wl-equsb3 30004 wl-mo3t 30021 wl-sb8eut 30022 sbeqal1 31304 frege55lem1b 37922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |