![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > equsex | Unicode version |
Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) |
Ref | Expression |
---|---|
equsex.1 | |
equsex.2 |
Ref | Expression |
---|---|
equsex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsex.1 | . . 3 | |
2 | equsex.2 | . . . 4 | |
3 | 2 | biimpa 484 | . . 3 |
4 | 1, 3 | exlimi 1912 | . 2 |
5 | 1, 2 | equsal 2036 | . . 3 |
6 | equs4 2035 | . . 3 | |
7 | 5, 6 | sylbir 213 | . 2 |
8 | 4, 7 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
F/ wnf 1616 |
This theorem is referenced by: equsexh 2039 cleljustALT 2110 sb5rf 2165 sb56 2172 sb10f 2200 axsep 4572 dprd2d2 17093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |