MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexh Unicode version

Theorem equsexh 2039
Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
equsexh.1
equsexh.2
Assertion
Ref Expression
equsexh

Proof of Theorem equsexh
StepHypRef Expression
1 equsexh.1 . . 3
21nfi 1623 . 2
3 equsexh.2 . 2
42, 3equsex 2038 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612
This theorem is referenced by:  cleljust  2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator