MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equtr Unicode version

Theorem equtr 1796
Description: A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtr

Proof of Theorem equtr
StepHypRef Expression
1 ax-7 1790 . 2
21equcoms 1795 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  equtrr  1797  equequ1  1798  equviniv  1803  equvin  1804  ax6e  2002  equvini  2087  equvinOLD  2090  sbequi  2116  axsep  4572  bj-axsep  34379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator