MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equtr2 Unicode version

Theorem equtr2 1802
Description: A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
equtr2

Proof of Theorem equtr2
StepHypRef Expression
1 equtrr 1797 . . 3
21equcoms 1795 . 2
32impcom 430 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  nfeqf  2045  mo3  2323  mo3OLD  2324  euequ1OLD  2387  madurid  19146  dchrisumlema  23673  funpartfun  29593  wl-mo3t  30021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator