![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > equvin | Unicode version |
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 1837, ax-13 1999. (Revised by Wolf Lammen, 10-Jun-2019.) |
Ref | Expression |
---|---|
equvin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equviniv 1803 | . . 3 | |
2 | equcom 1794 | . . . . 5 | |
3 | 2 | anbi2i 694 | . . . 4 |
4 | 3 | exbii 1667 | . . 3 |
5 | 1, 4 | sylib 196 | . 2 |
6 | equtr 1796 | . . . 4 | |
7 | 6 | imp 429 | . . 3 |
8 | 7 | exlimiv 1722 | . 2 |
9 | 5, 8 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |