MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqv Unicode version

Theorem eqv 3801
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv
Distinct variable group:   ,

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2450 . 2
2 vex 3112 . . . 4
32tbt 344 . . 3
43albii 1640 . 2
51, 4bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818   cvv 3109
This theorem is referenced by:  dmi  5222  dfac10  8538  dfac10c  8539  dfac10b  8540  uniwun  9139  fnsingle  29569  ttac  30978  bj-abtru  34473  nev  37791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
  Copyright terms: Public domain W3C validator