MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqv Unicode version

Theorem eqv 3767
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv
Distinct variable group:   ,

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2447 . 2
2 vex 3084 . . . 4
32tbt 344 . . 3
43albii 1611 . 2
51, 4bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  A.wal 1368  =wceq 1370  e.wcel 1758   cvv 3081
This theorem is referenced by:  dmi  5171  dfac10  8443  dfac10c  8444  dfac10b  8445  uniwun  9044  fnsingle  28406  ttac  29845  bj-abtru  33253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-12 1794  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-v 3083
  Copyright terms: Public domain W3C validator