![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqvinop | Unicode version |
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
eqvinop.1 | |
eqvinop.2 |
Ref | Expression |
---|---|
eqvinop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinop.1 | . . . . . . . 8 | |
2 | eqvinop.2 | . . . . . . . 8 | |
3 | 1, 2 | opth2 4730 | . . . . . . 7 |
4 | 3 | anbi2i 694 | . . . . . 6 |
5 | ancom 450 | . . . . . 6 | |
6 | anass 649 | . . . . . 6 | |
7 | 4, 5, 6 | 3bitri 271 | . . . . 5 |
8 | 7 | exbii 1667 | . . . 4 |
9 | 19.42v 1775 | . . . 4 | |
10 | opeq2 4218 | . . . . . . 7 | |
11 | 10 | eqeq2d 2471 | . . . . . 6 |
12 | 2, 11 | ceqsexv 3146 | . . . . 5 |
13 | 12 | anbi2i 694 | . . . 4 |
14 | 8, 9, 13 | 3bitri 271 | . . 3 |
15 | 14 | exbii 1667 | . 2 |
16 | opeq1 4217 | . . . 4 | |
17 | 16 | eqeq2d 2471 | . . 3 |
18 | 1, 17 | ceqsexv 3146 | . 2 |
19 | 15, 18 | bitr2i 250 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
cvv 3109
<. cop 4035 |
This theorem is referenced by: copsexg 4737 copsexgOLD 4738 ralxpf 5154 oprabid 6323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |