Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvisset Unicode version

Theorem eqvisset 3117
 Description: A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 3113 and issetri 3116. (Contributed by BJ, 27-Apr-2019.)
Assertion
Ref Expression
eqvisset

Proof of Theorem eqvisset
StepHypRef Expression
1 vex 3112 . 2
2 eleq1 2529 . 2
31, 2mpbii 211 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109 This theorem is referenced by:  ceqex  3230  moeq3  3276  mo2icl  3278  eusvnfb  4648  oprabv  6345  elxp5  6745  xpsnen  7621  fival  7892  dffi2  7903  tz9.12lem1  8226  m1detdiag  19099  dvfsumlem1  22427  dchrisumlema  23673  dchrisumlem2  23675  fnimage  29579  fourierdlem49  31938  bj-csbsnlem  34470 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
 Copyright terms: Public domain W3C validator