![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eqvisset | Unicode version |
Description: A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 3113 and issetri 3116. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
eqvisset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . 2 | |
2 | eleq1 2529 | . 2 | |
3 | 1, 2 | mpbii 211 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 cvv 3109 |
This theorem is referenced by: ceqex 3230 moeq3 3276 mo2icl 3278 eusvnfb 4648 oprabv 6345 elxp5 6745 xpsnen 7621 fival 7892 dffi2 7903 tz9.12lem1 8226 m1detdiag 19099 dvfsumlem1 22427 dchrisumlema 23673 dchrisumlem2 23675 fnimage 29579 fourierdlem49 31938 bj-csbsnlem 34470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |