MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq2 Unicode version

Theorem ereq2 7338
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq2

Proof of Theorem ereq2
StepHypRef Expression
1 eqeq2 2472 . . 3
213anbi2d 1304 . 2
3 df-er 7330 . 2
4 df-er 7330 . 2
52, 3, 43bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\w3a 973  =wceq 1395  u.cun 3473  C_wss 3475  `'ccnv 5003  domcdm 5004  o.ccom 5008  Relwrel 5009  Erwer 7327
This theorem is referenced by:  iserd  7356  efgval  16735  frgp0  16778  frgpmhm  16783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-cleq 2449  df-er 7330
  Copyright terms: Public domain W3C validator