![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ereq2 | Unicode version |
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2472 | . . 3 | |
2 | 1 | 3anbi2d 1304 | . 2 |
3 | df-er 7330 | . 2 | |
4 | df-er 7330 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 = wceq 1395 u. cun 3473
C_ wss 3475 `' ccnv 5003 dom cdm 5004
o. ccom 5008 Rel wrel 5009 Er wer 7327 |
This theorem is referenced by: iserd 7356 efgval 16735 frgp0 16778 frgpmhm 16783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-cleq 2449 df-er 7330 |
Copyright terms: Public domain | W3C validator |